607 research outputs found

    Effects of thickness on the spin susceptibility of the 2D electron gas

    Full text link
    Using available quantum Monte Carlo predictions for a strictly 2D electron gas, we have estimated the spin susceptibility of electrons in actual devices taking into account the effect of the finite transverse thickness and finding a very good agreement with experiments. A weak disorder, as found in very clean devices and/or at densities not too low, just brings about a minor enhancement of the susceptibility.Comment: 4 pages, 3 figure

    Disorder effect on the spin susceptibility of the two-dimensional one-valley electron gas

    Full text link
    Starting from the quantum Monte Carlo (QMC) prediction for the ground-state energy of a clean two-dimensional one-valley (2D1V) electron gas, we estimate the energy correction due to scattering sources present in actual devices such as AlAs quantum wells and GaAs heterostructures. We find that the effect of uncorrelated disorder, in the lowest (second) order in perturbation theory, is to enhance the spin susceptibility leading to its eventual divergence. In the density region where the Born approximation is able to reproduce the experimental mobility, the prediction for the spin susceptibility yielded by perturbation theory is in very good agreement with the available experimental evidence.Comment: 9 pages, 3 figures, special issue article for the SCCS2008 conference (Camerino, Italy

    Spin Susceptibility of Interacting Two-dimensional Electrons with Anisotropic Effective Mass

    Full text link
    We report measurements of the spin susceptibility in dilute (rs up to 10) AlAs two-dimensional (2D) electrons occupying a single conduction-band valley with an anisotropic in-plane Fermi contour, characterized by longitudinal and transverse effective masses, ml and mt. As the density is decreased, the spin susceptibility is significantly enhanced over its band value, reflecting the role of interaction. Yet the enhancement is suppressed compared to the results of quantum Monte Carlo based calculations that take the finite thickness of the electron layer into account but assume an isotropic effective mass equal to sqrt(ml.mt). Proper treatment of an interacting 2D system with an anisotropic effective mass therefore remains a theoretical challenge.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.

    Self-sustained vibrations in volcanic areas extracted by Independent Component Analysis: a review and new results

    Get PDF
    We investigate the physical processes associated with volcanic tremor and explosions. A volcano is a complex system where a fluid source interacts with the solid edifice so generating seismic waves in a regime of low turbulence. Although the complex behavior escapes a simple universal description, the phases of activity generate stable (self-sustained) oscillations that can be described as a non-linear dynamical system of low dimensionality. So, the system requires to be investigated with non-linear methods able to individuate, decompose, and extract the main characteristics of the phenomenon. Independent Component Analysis (ICA), an entropy-based technique is a good candidate for this purpose. Here, we review the results of ICA applied to seismic signals acquired in some volcanic areas. We emphasize analogies and differences among the self-oscillations individuated in three cases: Stromboli (Italy), Erebus (Antarctica) and Volcán de Colima (Mexico). The waveforms of the extracted independent components are specific for each volcano, whereas the similarity can be ascribed to a very general common source mechanism involving the interaction between gas/magma flow and solid structures (the volcanic edifice). Indeed, chocking phenomena or inhomogeneities in the volcanic cavity can play the same role in generating self-oscillations as the languid and the reed do in musical instruments. The understanding of these background oscillations is relevant not only for explaining the volcanic source process and to make a forecast into the future, but sheds light on the physics of complex systems developing low turbulence

    Correlation Energy and the Spin Susceptibility of the Two-Valley Two-dimensional Electron Gas

    Full text link
    We find that the spin susceptibility of a two-dimensional electron system with valley degeneracy does not grow critically at low densities, at variance with experimental results [A. Shashkin et al., Phys. Rev. Lett. 96, 036403 (2006)]. We ascribe this apparent discrepancy to the weak disorder present in experimental samples. Our prediction is obtained from accurate correlation energies computed with state of-the-art diffusion Monte Carlo simulations and fitted with an analytical expression which also provides a local spin density functional for the system under investigation.Comment: 7 pages, 3 figures, accepted for publication in Phys. Rev.

    Statistical analysis of Stromboli VLP tremor in the band [0.1?0.5] Hz: some consequences for vibrating structures

    No full text
    International audienceWe analyze time series of Strombolian volcanic tremor, focusing our attention on the frequency band [0.1?0.5] Hz (very long period (VLP) tremor). Although this frequency band is largely affected by noise, we evidence two significant components by using Independent Component Analysis with the frequencies, respectively, of ~0.2 and ~0.4 Hz. We show that these components display wavefield features similar to those of the high frequency Strombolian signals (>0.5 Hz). In fact, they are radially polarised and located within the crater area. This characterization is lost when an enhancement of energy appears. In this case, the presence of microseismic noise becomes relevant. Investigating the entire large data set available, we determine how microseismic noise influences the signals. We ascribe the microseismic noise source to Scirocco wind. Moreover, our analysis allows one to evidence that the Strombolian conduit vibrates like the asymmetric cavity associated with musical instruments generating self-sustained tones

    Columbus IFHX Ammonia Leak Analysis

    Get PDF
    After the Columbus Moderate Temperature Loop (MTL) InterFace Heat eXchanger (IFHX) low temperature event of GMT 345-2013, NASA investigated relevant transient scenarios involving IFHX rupture after water freezing and subsequent thawing. NASA recommended development of a Fault Detection Isolation and Recovery (FDIR) plan that would, in the event of a heat exchanger freeze event, close the Water On/Off Valves (WOOVs) to isolate the heat exchanger and prevent ammonia from the external flow loops from spreading into the cabin. NASA performed a preliminary simplified analysis for the reference case of IFHX rupture, but for a deeper understanding TAS developed detailed SINDA-FLUINT models of the Columbus ITCS that were built and run through the SINAPS GUI. This allowed simulation of the ammonia leakage physics including the variation of environmental parameters, thus providing more accurate and specific input to the FDIR under development. The result was finalization of the IFHX WOOVs closure sequence and wait times to contain the ammonia propagation to Columbus and allow identification of the leaking IFHX. In addition, the analysis results provided reference pressure profiles to be used on console and by the Engineering as support for the telemetry data assessment in case of failure.This paper gives an overview on the issue and focuses on the analytical aspects of the multiphase fluid dynamics involved
    • …
    corecore